Leonard A. Herzenberg (PhD '56)

Obituary: Leonard Herzenberg

States News Service October 31, 2013 Thursday LEONARD HERZENBERG, GENETICIST WHO DEVELOPED KEY CELL-SORTING TECHNOLOGY, DIES DATELINE: STANFORD, Calif. The following information was released by the Stanford University School of Medicine: BY KRISTA CONGER Leonard Herzenberg, PhD, professor emeritus of genetics at the Stanford University School of Medicine, died Oct. 27 at Stanford Hospital. His wife and longtime collaborator, Leonore (Lee) Herzenberg, and their dog, Gigi, were by his side. He had been hospitalized since he suffered a severe stroke on Oct. 8. He was 81. Herzenberg was honored with a Kyoto Prize in 2006 for his role in the development of the first fluorescence-activated cell sorter, or FACS. He also was awarded a Special Novartis Prize in Immunology in 2004 for his role in developing fluorescent-labeled antibodies to tag cells prior to FACS sorting. Herzenberg was well known for his pursuit of social justice, his desire to help those less fortunate then himself and his warm and welcoming demeanor. He donated the money accompanying his Kyoto Prize to nonprofit organizations working to improve health, human rights and education. "Len was a valuable and treasured member of our Stanford Medicine community for more than 50 years," said Lloyd Minor, MD, dean of the medical school. "He was a kind, thoughtful and just person eager to share scientific discoveries and opportunities with his friends and colleagues, and to improve access to education and career-advancement opportunities to women and disadvantaged youth. FACS technology made possible the birth of modern immunology, stem cell research and proteomics, and significantly advanced the clinical care of people with diseases such as cancer and HIV infection. Len's scientific accomplishments are prodigious. But it is his commitment to helping others that will be his enduring legacy." Leonore Herzenberg, also a professor of genetics at Stanford, collaborated scientifically with her husband for more than 50 years. At his insistence, she was formally recognized for her contributions to FACS at the U.S. presentation of the Kyoto Prize. The couple, who celebrated their 60th wedding anniversary earlier this year, maintained jointly functioning laboratory groups and shared an office remarkable for its colorful dcor and low cushions for seating. To colleagues and friends, they were known as Len and Lee an indomitable duo who were rarely apart, whether hosting department-wide parties at their campus home or discussing their research and planning the next set of experiments. "Without the Herzenbergs, tens of thousands of people now alive would not be," said Irving Weissman, MD, professor of pathology and of developmental biology and the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research at Stanford. "Without Len, the entire conceptual framework of how to evaluate single cells by their 'FACS' signature, and to identify and isolate them from a tissue like bone marrow or a cancer like leukemia, may have never happened. Len and Lee weren't just the central players in the field; for decades they were the field." They encouraged minority teenagers to pursue a college education by establishing a program to bring high school students from East Palo Alto to Stanford to learn about medicine, biology and the multiple benefits of higher education. In addition, from the 1960s onward, Leonard Herzenberg conducted a behind-the-scenes campaign to expand career advancement opportunities for women in immunology and in science in general. Changing cell biology "Len was a great man. Not only did he change forever how cell biology is done, he was an inspiring teacher, a deep thinker and a man of high moral conscience," said Nobel laureate David Baltimore, PhD, former president of the California Institute of Technology, who has known Herzenberg for more than 30 years. Baltimore is now a biology professor at CalTech. Leonard Herzenberg was best known in the scientific arena for developing, in collaboration with his wife, the fluorescence-activated cell-sorter. Like a coin sorter that separates a jumble of change into neat stacks of quarters, nickels, dimes and pennies, the FACS sorts cells according to fluorescent tags attached to their surfaces and keeps the cells viable during the process. Because researchers can couple the fluorescent tags to antibodies that home in on and attach to molecules produced only by certain cell types, the sorter can pluck out rarer-than-rare immune stem cells for further study, or identify stem cells and other populations of cells that are waxing and waning in diseases such as cancer or HIV. The possibilities of the technology, also known as flow cytometry, are limited only by the creativity of the users.